LABORATORIUM LASEROWE TECHNIKI Obróbki i Wytwarzania

Instrukcja do ćwiczenia 3

Pomiar kąta rozbieżności wiązki laserowej

Zagadnienia do samodzielnego opracowania:

Równanie fali i definicje występujących w nim wielkości, laser, charakterystyczne cechy promieniowania laserowego; energia, moc i natężenie światła oraz ich jednostki.

Wprowadzenie teoretyczne

Celem ćwiczenia jest zapoznanie się z metodą wyznaczania jednego z parametrów geometrycznych wiązki laserowej, jakim jest kąt rozbieżności wiązki.

Podstawowym rodzajem fali generowanej przez laser jest tzw. mod podstawowy. W takiej wiązce laserowej rozkład amplitudy E fali świetlnej w dowolnej płaszczyźnie poprzecznej z jest opisany funkcją Gaussa daną równaniem:

$$E_{r,z} = E_{\max} \exp\left[-\left(\frac{r}{w_z}\right)^2\right]$$
(1)

gdzie:

 $E_{r,z}$ - amplituda wiązki w przekroju z, w punkcie odległym o r od osi optycznej, E_{max} - maksymalna wartość amplitudy fali świetlnej (dla r=0),

z - odległość wzdłuż osi wiązki od początkowego przewężenia wiązki laserowej,

 $r = \sqrt{x^2 + y^2}$ - odległość rozpatrywanego punktu od osi wiązki,

 $2w_z$ - średnica wiązki laserowej w płaszczyźnie odległej o z od przewężenia.

Rys. 1. Schemat wiązki laserowej (rozbieżność wiązki narysowana w przesadzie)

Ponieważ $E^2 \sim I$, gdzie I oznacza intensywność (natężenie), która jest miarą energii przenoszonej przez falę (na jednostkę czasu i na jednostkę powierzchni), to analogicznie przebiega rozkład intensywności promieniowania wiązki:

$$I_{r,z} = I_{\max} \exp\left[-2\left(\frac{r}{w_z}\right)^2\right]$$
(2)

Rozkład amplitudy i intensywności pola w przekroju poprzecznym wiązki gaussowskiej przedstawia Rys. 2.

Rys. 2. Rozkład amplitudy - A i intensywności - I w poprzecznym przekroju wiązki gaussowskiej, B₁ - brzeg kształtu wiązki.

Przez średnicę $2w_z$ wiązki gaussowskiej w przekroju z=const rozumie się średnicę okręgu utworzonego z punktów wiązki, w których wartość amplitudy pola spada e razy w porównaniu z jej wartością maksymalną (równanie 1), lub odpowiednio intensywność wiązki (parametr mierzony na pracowni) zmniejsza się e^2 razy (równanie 2). Zgodnie z tą definicją średnica $2w_z$ jest średnicą wiązki w przekroju z=const, a $2w_0$ jest średnicą wiązki w płaszczyźnie z = 0. W miejscu z = 0 średnica wiązki jest najmniejsza, miejsce to nazywa się przewężeniem wiązki (rys. 3).

W przypadku, gdy pomiarów średnicy wiązki laserowej ($2w_1$ i $2w_2$) dokonamy w dwóch płaszczyznach odległych od siebie o Δz w odległości dostatecznie dużej od przewężenia ($z >> z_0$, rys. 3), kąt rozbieżności policzyć można z zależności:

 $2\Theta = \frac{2w_{Z_2} - 2w_{Z_1}}{\Delta z} \tag{3}$

Rys.3. Wyznaczanie kąta rozbieżności wiązki w dużej odległości od płaszczyzny przewężenia P_p.

Do badania zostanie użyty zestaw pomiarowy firmy Beam View składający się z kamery oraz oprogramowania do badania wiązki laserowej:

1. LaserCam-HR jest cyfrową kamerą przeznaczoną do rejestrowania i analizy profilu wiązki laserowej. Charakteryzuje się dobrym stosunkiem sygnału do szumu oraz liniowością i jednorodnością pomiarów.

2. Program Beam View jest wygodnym narzędziem do wizualizacji i pomiaru parametrów wiązki laserowej. W programie ustawiono automatyczne obliczanie parametrów wiązki takich jak: średnica wiązki, kołowość, współczynnik dopasowania krzywej Gaussa.

Główną część okna programu zajmuje po lewej stronie obszar wizualizacji obrazu otrzymanego za pomocą kamery a po prawej stronie tekstowy obszar wyników analizy przeprowadzanej przez program (Rys. 4).

Rys. 4. Okno programu

Obszar wizualizacji przedstawiony jest osobno na Rys. 2. Obrazuje on rozkład natężenia światła w płaszczyźnie poprzecznego przekroju wiązki laserowej, która pada na kamerę podłączoną do złącza USB komputera. Poszczególne kolory odwzorowują skalę natężenia światła, od najniższego mierzalnego natężenia – kolor czarny, poprzez wszystkie kolory przedstawione na pasku po lewej stronie obszaru wizualizacji, aż do największego mierzalnego natężenia – kolor biały.

Rys. 5. Obszar wizualizacji

Widoczne także są dwie krzyżujące się zielone linie – pionowa i pozioma. Wzdłuż tych linii jest automatycznie skanowane natężenie światła I, a wynik tego skanowania przedstawiony jest w postaci dwóch wykresów I(x) i I(y), zwanych profilami, widocznych przy dolnej i lewej krawędzi całego obszaru wizualizacji. Oba profile – kolor fioletowy – nie są gładkie z powodu skończonej rozdzielczości pomiaru i (niewielkich) przypadkowych błędów pomiarowych. W tle tych linii widoczne są także gładkie linie koloru niebiesko-zielonego dopasowane do powyższych punktów pomiarowych. Dopasowane linie są wykresami funkcji Gaussa

$$I(r) = I_{\max} \exp\left[-2\left(\frac{r-r_o}{w}\right)^2\right]$$

która przedstawia teoretyczną zależność I(r) dla idealnej wiązki światła laserowego. W powyższym wzorze r może być współrzędną skanowania x lub y dla odpowiedniej z dwóch linii, r_o jest współrzędną x lub y maksimum natężenia, a w jest standardowym (umownym) promieniem wiązki (2w to standardowa średnica wiązki).

Po kliknięciu w okolice przecięcia się obu linii można przesuwać położenie tego przecięcia. Każdą linię można też osobno przesuwać po kliknięciu na nią. Natomiast po kliknięciu prawym klawiszem myszki w okolice przecięcia się obu linii można przejść w tryb obracania linii (znaczy to, że linie x i y nie muszą być poziome i pionowe). Wyjście z trybu obracania odbywa się także przez kliknięcie prawym klawiszem myszki.

Dane pomiarowe I(x) i I(y) otrzymane ze skanowania wzdłuż obu linii mogą być także zapisane w pliku.

Menu programu przedstawiono na Rys. 6, a wyjaśnienie jego poszczególnych funkcji – na Rys. 7, 8 i 9.

D	Czyszczenie bufora danych
È	Otwórz plik tekstowy z danymi
	Zapisz dane w pliku tekstowym
9	Drukuj
	Kopiuj wykres, wyniki analizy lub informację testową
	Ciągła praca analizatora danych
	Zamrożenie analizatora danych
	Tryb Video na żywo
fx	Analiza danych On/Off
σ	Statystyka On/Off
0	Wykres konturowy
	Wykres 3D
\oplus	Wykres biegunowy (niewidoczny w trybie Video na żywo)
	Powiększenie
	Paleta kolorów wyświetlania wykresu

Rys. 6. Menu programu

Rys. 7. Podstawowe funkcje menu

+	Kursor krzyżowy On/Off	
¢	Apertura On/Off	
¥	Profile On/Off	
\times	Ustawienia linii profili	
+	Pozycja odniesienia On/Off	

Rys. 8. Dodatkowe funkcje menu

[Left Mouse Button]	Przesuwanie linii profili
÷.	Przesuniecie linii profili na wyważony środek wiązki
<u>*</u>	Przesuniecie linii profili na pik natężenia

Rys. 9. Menu przesuwania linii profili

Gdy włączony jest przycisk menu fx, w prawej części okna programu widoczne są wyniki analizy obrazu wiązki laserowej (Rys. 10).

1	Peak (X,Y)R [µm]	(4763.7, 3396.9) 5850.8
2	Centroid (X,Y)R [µm]	(4755.2, 3460.5) 5881.0
3	Peak % Resp. [%]	90.9
4	Total Rel. Power [mW]	16.390
5	Eff. Area [mm²]	1.461
5	Pk Pwr Density [W/cm²]	1.122
6	Eff. Diameter 86.500% [mm]	1.920
7	Aper. Diameter 86.5% [mm]	1.995
8	d4 Sigma Width [mm]	1.956, 2.082
9	d4 Sigma Diam [mm]	2.020
10	Divergence 86.5% [mrad]	1.995
11	Knife Edge 84.0% [mm]	1.840, 2.046
12	Slit Diameter 86.5% [mm]	1.847, 2.044
12	Gaussian Fit 86.5%	
13	Coefficient	0.985, 0.988
14	Centroid [mm]	4.765, 3.458
15	Peak Intensity [digital]	57934.8, 59812.6
16	Diameter [mm]	1.818, 2.043
17	Roughness of Fit [%]	4.0, 2.5
18	Peak To Avg.	2.339
10	Aperture Uniformity	
19	Min, Mean, Max [digital]	5464.0, 23302.0, 59555.0
20	Sigma, RMS [digital]	14543.8, 27468.5
21	% Power in Aper. [%]	63.7
22	Image Uniformity	
23	Min, Mean, Max [digital]	0.0, 5949.2, 59555.0
24		-

25

26

Rys. 10. Obszar analizy

Przebieg doświadczenia

- Upewnić się, że przewidywany przebieg wiązki laserowej nie obejmuje oczu uczestników (nikt nie siedzi). Włączyć zasilacz lasera He-Ne. Upewnić się, że kamera jest podłączona do wejścia USB komputera a następnie ruchomić program Beam View.
- 2. Za pomocą lustra nakierować wiązkę światła laserowego na kamerę. Skontrolować obraz wiązki laserowej w programie, czy nie jest przesterowany (biały kolor w centrum obrazu) i ewentualnie odpowiednio ustawić czułość lub zastosować filtr optyczny.
- Zmierzyć odległość z₁ kamery od lasera.
 Wyłączyć aktualizację danych za pomocą przycisku menu (czerwony kwadracik).
- 4. W obszarze wizualizacji przesunąć przecięcie linii profili na środek wiązki (ręcznie albo za pomocą przycisku menu z Rys. 9) oraz ewentualnie obrócić linie tak, aby jedna biegła wzdłuż największej rozpiętości obrazu wiązki a druga wzdłuż najmniejszej.
- 5. Upewnić się, że w menu naciśnięty jest przycisk fx analizy danych. W obszarze wyników analizy wybrać spośród poniższych parametr najlepiej obrazujący średnicę wiązki (razem z niepewnością pomiaru) i odczytać jego wartość:
 - położenie maksimum natężenia i środka natężenia (poz. 1 i 2 na Rys. 10)
 środek natężenia jest "środkiem ciężkości" obrazu z wagami równymi natężeniom poszczególnych pikseli
 - całkowitą moc (poz. 4)
 - maksymalne natężenie światła (poz. 6)
 - efektywną średnicę na poziomie 86.5% maks. natężenia (poz. 7 na Rys. 10)
 - jest to średnica koła o powierzchni równej sumie powierzchni wszystkich pikseli kamery oświetlonych światłem o natężeniu większym niż ustalony procent (86.5%) maksymalnego natężenia
 - średnicę apertury czyli efektywną średnicę na poziomie 86.5% całkowitej mocy (poz. 8) jest to średnica koła, w którym zawiera się ustalony procent (86.5%) całkowitej mocy
 - parametry dopasowanych krzywych Gaussa wzdłuż osi x i y, w tym gaussowską średnicę (poz. 18) w obu kierunkach x i y.
 - eliptyczność wiązki, w tym: długości dużej i małej osi elipsy, orientacja kątowa osi, kołowość (stosunek długości dużej i małej osi elipsy).
- 6. Zapisać obraz wiązki światła laserowego
- 7. Pomiary powtórzyć dla innej, znacząco różniącej się odległości z₂.
- 8. Zanotować niepewności pomiarów.

Opracowanie wyników pomiarów polega na wyciągnięciu wniosków z zapisanego obrazu i wyników jego analizy (głównie średnicy wiązki laserowej w miejscu umieszczenia kamery). Celem jest obliczenie kąta rozbieżności wiązki laserowej i jego niepewności. Niepewność tę należy obliczyć metodą propagacji niepewności.

Literatura:

- [1] R. Jóżwicki, Optyka laserów, WNT Warszawa 1981.
- [2] BN-86/3378-01/05.
- [3] BN-86/3378-01/06.